Thermogenic capacity of human periaortic adipose tissue is transformed by body weight
نویسندگان
چکیده
The anatomical location of adipose tissue might have direct implications for its functionality and risk of cardiovascular disease. Adipose tissue surrounding blood vessels may be thermogenically more active in specific areas of the body, releasing substances that regulate vascular metabolism. In humans, the phenotypic characteristics of adipose tissue surrounding the aorta and the cardiovascular disease risk that it might entail remain largely unknown. Here, we compared thermogenesis-related molecular features of human periaortic adipose tissue samples with those of subcutaneous adipose tissue, obtained by sternotomy from 42 patients undergoing cardiovascular surgery. To determine the expression of genes related to energy expenditure and the levels of some adipokines, histological examinations, quantitative PCR, and protein expression measurements in adipocyte precursor cells were performed. Periaortic adipocytes were smaller than those from subcutaneous tissue. Moreover, weight gain induced periaortic adipocyte hypertrophy (r = -0.91, p<0.01). Compared to subcutaneous tissue, adiponectin, FABP4, IL-4 and IL-6 was decreased in periaortic adipocytes, whereas FGF21, UCP-1, PGC-1a, CITED1, Omentin and TFAM (Mitochondrial protein) increased. Upon analyzing patients' clinical conditions, it emerged that the levels of PGC-1a both in male (r = -0.48 p<0.04) and female (r = -0.61, p<0.05) and TFAM in male (r = -0.72, p<0.0008) and female (r = -0.86, p<0.002) decreased significantly with progressive weight gain. However, no differences were observed in patients with diabetes mellitus 2 or Hyperlipidemia. Adipocytes surrounding the ascending aorta present markers of major thermogenic activity than those in subcutaneous tissue. Nevertheless, this characteristic might change, due to unfavorable metabolic conditions such as obesity, which is a risk factor for cardiovascular disease.
منابع مشابه
Functional Characterization of Preadipocytes Derived from Human Periaortic Adipose Tissue
Adipose tissue can affect the metabolic control of the cardiovascular system, and its anatomic location can affect the vascular function differently. In this study, biochemical and phenotypical characteristics of adipose tissue from periaortic fat were evaluated. Periaortic and subcutaneous adipose tissues were obtained from areas surrounding the ascending aorta and sternotomy incision, respect...
متن کاملTranslational issues in targeting brown adipose tissue thermogenesis for human obesity management
The recent advancements in unraveling novel mechanisms that control the induction, (trans)differentiation, proliferation, and thermogenic activity and capacity of brown adipose tissue (BAT), together with the application of imaging techniques for human BAT visualization, have generated optimism that these advances will provide novel strategies for targeting BAT thermogenesis, leading to efficac...
متن کاملDoes Adipose Tissue Thermogenesis Play a Role in Metabolic Health?
The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has le...
متن کاملThermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure.
This study investigated the regulation of thermogenic capacity in classical brown adipose tissue (BAT) and subcutaneous inguinal (SC Ing) white adipose tissue (WAT) and how it affects whole-body energy expenditure in sedentary and endurance-trained rats fed ad libitum either low fat or high fat (HF) diets. Analysis of tissue mass, PGC-1α and UCP-1 content, the presence of multilocular adipocyte...
متن کاملLeptin orally supplied to neonate rats is directly uptaken by the immature stomach and may regulate short-term feeding.
Although leptin is a hormone mainly produced by the adipose tissue, it is also produced by the gastric mucosa and the mammary epithelium and is present in maternal milk. The effects of milk leptin on the neonate are not known. The purpose of the investigation was to evaluate the short-term effects of the administration of a single oral dose of leptin on 4-d-old rats as well as the effects of ch...
متن کامل